
Measuring the Use and
Abuse of Brain Wallets

Marie Vasek - University of New Mexico
Ryan Castellucci - White Ops

Introduction - Marie Vasek
● Newly minted assistant professor of computer science at the University of

New Mexico
● Discovered Bitcoin in 2011; first Bitcoin-related papers in 2014
● I’m a con n00b

2

Introduction - Ryan Castellucci
● Cylon^WBot detection researcher for White Ops
● Doing silly things with Bitcoin since 2011
● I went to DEF CON 12 and now I feel old

3

Typical RSA Key Generation
● Generate a large random number (p) - so big special libraries are required
● Make sure the number doesn’t have any small prime factors
● Make sure the number passes probabilistic tests for primality
● Make sure that n-1 is coprime to the public exponent
● Start over if any checks fail, generate a second number (q) the same way
● Calculate the private exponent and several other derived values

4

Typical Elliptic Curve key generation
● Generate a large random number in the right range for the curve
● For Bitcoin’s curve, nearly any 256 bit value will work

5

A perfect storm

● A trivial key generation process to play with
● Paranoid cypherpunks worried about evil random

numbers
● Substantial amounts of money on the line
● Results:

○ A simple to use tool where key = SHA256(passphrase)
○ Money piñata for password crackers

6

Password cracking input - XKCD Phrases
● Took intersection of lists from a few “XKCD password generator” tools
● “correct horse battery staple” ~37.8฿
● “expect pants size clue” ~2.18฿
● “earth air fire water” ~0.0012฿
● “deal iron science food” ~0.00015฿

7

Password cracking input - Phrases
● XKCD-style (limited wordlist)
● Cryptocurrency IRC chat logs
● Reddit comments
● Wikiquote
● Wikipedia
● BrainyQuote
● Facebook Names
● Urban Dictionary
● Song Lyrics

8

Password cracking input - Standard lists
● RockYou
● MySpace
● Linkedin
● Openwall
● Keyboard Patterns
● Crackstation
● Naxxatoe (cleaned up)
● Uniqpass
● Everything on SkullSecurity
● Brute force

9

Password cracking - Process
● Large jobs run on AWS (Thanks UTulsa!)
● NFS server (m4.10xlarge) for data files, software and output
● Spot instances (m4.2xlarge) for compute
● SQS FIFO used for job management
● Simple python script runs subprocess.call on whatever it gets from SQS
● One copy of script per virtual core (hyperthreading helps)

10

Password cracking - Job runner setup
imports and credential definitions

sqsc = boto3.client('sqs',aws_access_key_id=ACCESS,\

aws_secret_access_key=SECRET,region_name=REGION)

sqsr = boto3.Session(aws_access_key_id=ACCESS,\

aws_secret_access_key=SECRET,region_name=REGION).resource('sqs')

sqsc.list_queues()

queue = sqsr.get_queue_by_name(QueueName=QUEUE)

11

Password cracking - Job runner read queue
def get_one_message():

 messages = queue.receive_messages(MaxNumberOfMessages=1)

 if len(messages) == 1:

 return messages[0]

 else:

 return None

12

Password cracking - Job runner loop
for message in iter(get_one_message,None):

 print 'RUNNING JOB:\t' + message.body

 job = json.loads(message.body)

 proc = subprocess.call(job['exec'], shell=True)

 proc.wait()

 if proc.returncode == 0:

 print "Job's done!"

 message.delete()

13

Password cracking - Example jobs
mp64.bin --hex-charset -1 7e -2 68 ?1?2?a?a?a?a | \

brainflayer.sh -v -o /brainflayer/results/mp_aaaaaa_x_9002_9025.flay

combinator3.bin /brainflayer/wordlists/xkcd/common/925.txt \

/brainflayer/wordlists/xkcd/common/g16.txt \

/brainflayer/wordlists/xkcd/commoncommon.txt | \

brainflayer.sh -v -o \

/brainflayer/results/common_xkcdxkcdxkcdxkcd_925g16.flay

14

Password cracking - Example jobs
find /brainflayer/wordlists/skull/ -type f | grep .txt | \

grep -v withcount | grep -v rockyou | xargs cat | tr -d "\r" | \

brainflayer.sh -n 5/16 -v -o /brainflayer/results/skull_5_16.flay

hashcat-cli64.bin --stdout \

/brainflayer/wordlists/myspace-rockyou-linkedin.txt -r \

/brainflayer/tools/hashcat-3.30/rules/leetspeak.rule | \

brainflayer.sh -v -o /brainflayer/results/mrl___leetspeak.flay

15

Password cracking - Random lessons learned
● Using EBS snapshots to access data files is terrible
● NFS isn’t great either, but gets the job done
● Spot pricing varies (sometimes wildly) between regions

16

Blockchain analysis

● First pass: use downloaded blockchain to gather transaction data
for each brain wallet

● But -- attackers seem to drain too quickly for this!
● Second pass: use blockchain.info API to gather this data down to

the second.
○ Sanity check using first method.

17

Password Corpora: 3.9 trillion Candidate Passwords

18

Brain Wallet Usage

● 2,005 distinct brain wallets
● 1,959 passwords and passphrases
● 3,219 BTC (approximately 312 K USD)
● Notable Passwords/phrases:

○ This string contains 0.25 BTC hiding in plain sight.
○ “”
○ bitcoin is awesome

19

New Brain Wallet Usage by Month

20

Brain Drain Time

21

Brain Wallet Drains over Time

22

Draining: complexity
● zxcvbn: password complexity metric developed by Wheeler at dropbox.
● Tried to see if more complex passwords affected user or attacker behavior

○ Used Spearman’s rank-correlation coefficient
● Found no significant effect (p > 0.1 in all cases)

What does this mean?
● Users don’t pick stronger passwords when securing more money.
● Attackers don’t prefer less complex passwords.

23

Draining: Passphrases vs. Passwords

24Time to drain by password or passphrase length

Beyond Brain Wallets
● Bad Nonces
● Small/large value keys
● Math.random()
● User selected seeds
● Published “example” addresses with keys
● Arbitrary constants
● Blockchain data
● File hashes
● Ethercamp
● Parity Wallet
● P2SH (Multisig, weird stuff)

25

Beyond Brain Wallets
954f7d96502b5c5fe2e98a5045bca7f5e9ba11e3dbf92a5c0214a6aa4c7f2208

9c41a5f0461dbd3145aedfb838c98c9ccd41ea5cf757ae44c4cbe2734fd89c9b

452821e638d01377be5466cf34e90c6cc0ac29b7c97c50dd3f84d5b5b5470917

00000000000000000000000028bc56c889111335c23e6715a0aeb92e0adeb2e6

0031323334

fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03640d8

000000001976a914742a9aacda1b402be98dbcb20c3f9248cda5e83a88ac7276

000000004257f209a21040d1baeb99c1ea852271238ef67a124a2c5349e1d870

0202030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f20

b1674191a88ec5cdd733e4240a81803105dc412d6c6708d53ab94fc248f4f553

0001

26

Beyond Brain Wallets
SHA256(Chrysanthemum.jpg)

Bitcoin Transaction ID (late 2014 spam tx)

65th through 128th hexadecimal digit of the fractional part of pi

0 padded hash160 of address ‘14iPehNvQRjQgDHvFdMhZbBqhytS2teZVu’

NULL padded ASCII ‘1234’

n (order of curve) - 105

chunk of raw data from some random Bitcoin transaction

block hash of Bitcoin block 1234

No idea why this string of bytes was on my hard drive

SHA256(bitcoin.pdf)

¯_(ツ)_/¯

27

Pay-to-Script Hash Attacker

● 139 Bitcoin wallets found
● First seen in March 2012
● 43 still undrained -- total of 0.165 BTC or 421 USD left
● Others all drained in under 24 hours
● Median drain time 9 hours
● 13 of these attackers also drained brain wallets

○ At least 8 were spam attackers

28

Large Bitcoin Collider

29

Large Bitcoin Collider
● Distributed incremental key search
● Only searching for keys with a balance
● Admin claims sweeping funds as “lost and found” legal in his country.
● GPU accelerated
● Scary perl client that executes arbitrary arbitrary code from server :-)
● Actually hit some keys with small balances, likely original keys, not collisions

○ 006cd610b53cba

○ 00e09c93a2ec81

○ 0005e1667c899783

● Also has been finding keys for a “puzzle transaction”
● Won’t steal anyone’s coins unless they used a deliberately bad RNG

30

Drains by Bitcoin Mining Pools
● 8 mining pools
● 157,710 drains
● 88,708 transactions
● September 2013 - May 2017
● 15 brainwallets
● 1.58 BTC (437 USD)

● Drain to transaction fees, rather than to an address

31

But why?

● Clean up unspent transaction outputs (UTXOs)
● Unneccesary UTXOs eat valuable diskspace on nodes
● Bitcoin network “stress test”

○ Advocating for bigger block sizes by causing mass disruption
○ Create a 30 day backlog of transactions
○ June 13- August 28, 2015
○ 15 brainwallets
○ 20,172 transactions
○ 6.6 BTC

32

Thanks!
● Joseph Bonneau, Cameron Keith, and Tyler Moore
● Filippo Valsorda
● “Llamasoft” https://github.com/llamasoft

33

https://github.com/llamasoft

34Source: http://blog.ether.camp/post/138376049438/why-brain-wallet-is-the-best

LOL JUST NO

Questions?

https://secon.utulsa.edu/vasek/ @mjvasek

https://rya.nc/ @ryancdotorg

35

https://secon.utulsa.edu/vasek/
https://twitter.com/mjvasek
https://rya.nc/
https://twitter.com/ryancdotorg

