Strategically Holding Back Bugs and Patches

Marie Vasek and Ryan Castellucci

University College London, London, UK
m.vasekQucl.ac.uk, pubs@ryanc.org

Abstract. Most academic work on patching behaviour is under the as-
sumption that vendors must patch every bug. We outline scenarios where
it is strategic to not report a bug or not patch a known bug in a system.
We give examples where others have deployed these strategies and dis-
cuss the varied trade-offs in the ecosystem. Bucking the common wisdom,
we offer practical considerations to otherwise taboo behaviour.

1 Introduction

Most existing research considering patching software systems thinks about when
or how to patch bugs. Governments even have started to require the patching of
severe bugs within a set time table [25]. But, it is not always strategic to deploy a
patch to your system. The UK’s Cybersecurity Center (NCSC) strongly encour-
ages patching, though notes that sometimes it is too hard and they pragmatically
lay out mitigation strategies other than patching® [32].

Similar to these tradeoffs, it is not always strategic for defenders to declare
the bugs that they found to the appropriate vendors or write patches for your
software library or codebase. Reporting bugs is hard, and often fruitless. Writing
patches for bugs can be costly, particularly for bugs that are not likely to be
exploited immediately or ever.

Our work considers two components. First we consider why some users do
not report bugs to vendors. Next we consider why vendors do not patch bugs
which are reported. While not acting in line with best practices here can open
up legal liability, reporting can cause significant downsides to the reporter and
patching can be more money or expose more risks than it is worth. There are
trade-offs in all behaviours. We believe that bug handling needs to be treated in
a proper context where not reporting or not patching is truly considered.

2 Not Reporting Bugs

Commonly, reporting security bugs ends in somebody getting paid, either an
independent security researcher reporting via a bug bounty program or a paid
security researcher disclosing via their employer, a professional auditing service.
However, not all bugs are paid bugs. Other users report bugs to fix issues out

! This is mildly controversial in terms of advice that countries give about patching [27].



2 Marie Vasek and Ryan Castellucci

of concern for the ecosystem or other benevolent reasons. Existing work consid-
ers this trade-off from a nation-state perspective [1,8,22]. More broadly, Laube
and Bohme survey the literature in cybersecurity information sharing, includ-
ing a brief consideration of non-reporting of bugs [19]. We consider a variety of
malicious and non-malicious reasons to not report bugs.

Bureaucracy Many systems make it hard to report bugs directly to them.
Some bugs are reported by security researchers reporting it to their friend who
works at the affected companies. One underappreciated asset here is the informal
social network between cybersecurity professionals, many of whom have switched
between bug finding and in-house defence roles. Long term relationship building
skills then become invaluable for those in this field of work. For those not socially
connected, open source bug trackers and corporate bug bounty programs can
require a security researcher to fill out forms, sign an NDA, email back and
forth with the organisation, to then not receive money in proportion with their
hourly wage [6]. However, releasing a bug on social media can give a security
researcher buzz about their work while allowing them to focus their efforts on
security research, not bureaucracy.

Fingerprinting There’s an entire class of fingerprinting bugs that are useful
for anti-fraud and network defence purposes. This is sometimes done on purpose
by the platform, e.g. by deliberately manipulating their software stack to detect
those trying to spoof. But, other times, security researchers will find a bug on a
commonly used system that will allow the researcher to uniquely identify some
users. These bugs are much less useful after platforms patch them, so there’s a
strong incentive not to report so the identification vector stays open. Whether
sometimes being fingerprintable is a bug is an entirely separate discussion. (This
can be a feature.)

Red teaming. Similarly to fingerprinting, this class of bugs is found by security
researchers for a purpose that stops being useful the moment it is reported.
Red team people will keep bugs private for their own use, e.g., in professional
hacking tournaments like DEF CON CTF. This common practice allows the
security researcher limited use of the bug in order to gain professional advantage
over other teams. Professional software penetration teams can keep a private set
of unreported bugs to use against those that hire them; these can be reported
after a commission is completed. Similarly, there are black hat private bugs
where security researchers keep bugs private to infiltrate systems they are not
authorised to enter. Both of these are active methods which will end up leaking
the existence of the bug eventually.

Bad faith vendors. Not all vendors act in good faith after bug reports.
The cryptocurrency, Iota, publicly smeared researchers for reporting a bug to



Strategically Holding Back Bugs and Patches 3

them [5]. To combat against bad faith vendors, security researchers might pub-
licly disclose details of bugs out of spite rather than reporting. Other researchers
might publicly acknowledge the bug without privately reporting or giving suf-
ficient details to fix it. For instance, Castellucci never disclosed the details of
the keyfinding attack on the BitFi cryptocurrency hardware wallet after BitFi
engaged in personal attacks against them [20]. The BitFi wallet used an insecure
brainwallet scheme to protect the customers’ money. By publicly demonstrating
their exploit, Castellucci aimed not to secure the fundamentally flawed technol-
ogy, but rather to encourage users not to buy the wallet [7].

Forensic short selling. Bugs in software can also serve as a kind of proprietary
research for activist short sellers and short-biased research shops. By finding bugs
and then strategically releasing information on them, a security researcher can
earn quite a lot more money than would be possible via a bug bounty program.
For example, Muddy Waters is a short selling investment research firm that
deployed this strategy against a medical device company, Abbott (formerly St.
Jude) [23]. This strategy delays the reporting of bugs to the vendor to allow time
for the security researchers to profit.

Commercial use. Exploit brokers serve to make money on buying exploits
from security researchers and selling them to the highest bidder. These bidders
use the bought exploits to gain access to unauthorised, high value systems. Some
countries use them to access the devices of dissidents. Other exploit brokers, like
Cellebrite, buy or develop exploits and rent their product to “gain access to
systems” to third parties, like law enforcement. There is a large class of exploits
that are much more commercially viable to third parties than they are to the
exploited companies.

For example, Castellucci uncovered the goto fail bug [17] after colleagues of
theirs overheard someone at a bar drunkenly bragging about how they were going
to sell it to GCHQ for “half a million”. Castellucci was able to develop a working
exploit based on the relayed information and had the details anonymously back
channelled to Apple who released a fix. While goto fail’s illicit usage was
thwarted, there were likely others sold off at similar price points.

3 Not Patching Bugs

Most companies have an internal system to track bugs, prioritise them, and patch
them as appropriate. While these systems do not necessarily lead to strict com-
pliance with industry norms, they often lack the consideration of not patching
bugs [25]. Similarly, open source software maintainers often find vulnerabilities
make them look bad [2]. Incentives are not strictly to patch or even acknowledge
bugs, depending on community norms, which Ayala et al. found on their (pre-
interview) open source maintainer community survey. Non-reproducible bugs
reported to open source repositories have been found to not be patched [10].



4 Marie Vasek and Ryan Castellucci

We note that while many academics consider corporate decisions here, the
decisions here are often made by individual engineers working in a corporation.
For reasons we will lay out, there are plenty of individual incentives that come
into play (along with corporate decisions that developers are given). Here we lay
out some cases where it is strategic to not patch bugs in software.

Compatibility. Microsoft Excel deliberately implemented a bug for compatibil-
ity with Lotus 1-2-3 which treats 1900 as a leap year [21]. This is still included
in their software today, despite Lotus 1-2-3 being last updated in 2002. They
have not patched it because this would cause too many other waterfalling is-
sues. Here, there was a weighing of correct behaviours with compatibility and
sometimes compatibility wins over correct behaviour.

Might cause provocation. Some bugs are left fearing worse scenarios to arise
in their stead. It can be strategic to leave bugs if they don’t cause significant
economic damage to allow the small number of people to exploit them and
the people who would exploit them would do worse things. For example, wifi
providers often don’t block known bugs like, e.g., DNS tunnelling. Blocking DN'S
tunnelling could result in people provoked into worse things. They might probe
the network’s publicly facing computer systems or e.g. clone the MAC address
of a paid user and kick a legitimate user off to use the network for free. This is
particularly troubling in common scenarios like on aeroplanes.

Workflow issues. Sometimes removing bad code can cause issues for developers
who use the features in less common ways. Recently, Castellucci has been trying
to argue for removing footgun options from major cryptography libraries. Some
of them have decided to do this and others have decided not to, overwhelmingly
citing workflows [24]. For example, RSA-512 should never be used at this point
since it’s insecurity renders the actual crypto fairly moot. But, because some use
it in unit tests, the behaviour is allowed to remain. Changes aren’t necessarily
neutral for all.

Low impact - high cost. There’s the class of bugs where addressing the
bugs would require substantial engineering work or other tradeoffs in design.
Particularly when the bug is difficult to abuse and the impact is relatively minor,
it can be strategic not to patch. An example is HT'TPS strict transport security
which has a bug that can be used as a tracking vector because it isn’t subject to
the same partitioning as things like cookies and cacheing [30]. Browser vendors
know about this bug and acknowledge it as a theoretical issue, proposing to
monitor it and patch if it becomes actually weaponised. There’s a tradeoff —
fixing this one bug might cause issues in another area.

Similarly, a developer who is overworked might triage their bugs to patch
and have such a high workload, that they might never get to all of the bugs
reported. Those which are low impact with a high cost then might be triaged
low enough to never be fixed.



Strategically Holding Back Bugs and Patches 5

Future impact - high cost. This is related to the last category, except for
when the bug will only occur a long time in the future. We note that Y2k bugs
were in this category for quite some time until the world scrambled in the late
1990’s to find and quash them. logrotate has a bug like this?. The software
makes some assumptions on the file format naming conventions which mean that
it will break when the UNIX epoch timestamp gets another digit. This harkens
back to Y2K bugs, except 264 years might be more reasonable of a time period.

Another instance here is in the case of a startup where an individual developer
might not patch a bug because it will likely not be exploited during their tenure
at the company. Similarly, an entire startup might decide not to patch known
bugs in the rush to push a product before they run out of startup funds.

Jailbreaks. Jailbreak bugs allow users to bypass system boundaries to gain
access above what the system allows. We classically think about these where
users jailbreak their phones, often voiding their End User License Agreement
with the operating system software. These are primarily used by users against
their own devices and the legality is varied around the world.

There’s a whole spectrum of things here. Some jailbreak “features” end up
being incorporated back by the platform, like expanded emojis in i0S. Other
times, there’s no clear security boundary being breached by the bug. For instance,
some jail break-type bugs require physical access or even just administrative
access. These kinds of bugs are useful or extremely useful to a certain subset of
users needing root access. A team found a bug that was useful for jailbreaking
Nintendo, but sat on it hoping that the device would reach EOL and it could be a
permanent bug. It had minimal security implications, though it was patched two
years later after it was found by another [31]. This contrasts from times when a
security-sensitive bug is weaponised for a short period of time. For example, a
jailbreak bug for i0S ended up causing some rooted iPhones to form a botnet [3].

Bug door. Not all bugs are found by externals. Others are developed into the
software for special, extra-purpose use, e.g. back doors which are bugs or “bug
doors”. By their very nature, they allow deniability. For example, brainwallet.
org allowed user to create very insecure brainwallets, opening them up for drain-
ing by attackers. There were strong suspicions online via, e.g. Gregory Maxwell,
who speculated that the owner of this website was cracking brainwallets on the
side3. Dual_EC_DRBG was similarly speculated to be a bug door by the NSA [4,
9, 35].

Forced obsolescence. It can be a strategic decision not to patch security bugs
in order to force users to buy new software or new devices. This is planned

2 https://github.com/logrotate/logrotate/blob/d57dff56edce193abf7a660da3635be89e57fc8e/
logrotate.c#L1892

3 https://web.archive.org/web/20140308200904/https://people.xiph.org/
“greg/brainwallet.txt



6 Marie Vasek and Ryan Castellucci

obsolescence but worse. Classically, vendors of low end Android phones use this
method as do vendors for consumer and prosumer level network hardware (e.g.
home routers, network-attached storage). It’s unclear if this is an explicit strategy
or just a time-limiting mechanism without any further thought. The EU Cyber
Resilience Act and similar UK regulation aims to fix this.

4 Discussion

The main thread in not patching bugs by legitimate codebases is liability.* Many
of these had a cost benefit trade-off (not all as explicit as Microsoft) where it
was deemed not worth the money to patch the system. Rather, the organisa-
tion would accept the risk, sometimes monitor it to reevaluate if it is being
weaponised, and accept the underlying liability for knowing about the bug and
not patching.’

This contrasts with the reasons for not reporting bugs. These are often delay
tactics to allow the security research to monetise the bug beyond the bounty
offered through an official program. Bug bounty programs are an attempt for
companies to better align incentives [18]. They often make reporting easier,
provide consistency, and offer a monetary reward. There is a lot of room for
improvement, though. The constant flood of low quality reports can drown out
legitimate bugs and issues, frustrating both organizations and researchers. Non-
reproducible bugs make it tricky — is the bug report just poorly documented
or is the bug a one-off? Ghosh et al. found this to be a substantive issue when
considering npm repositories on GitHub [10]. Is it worth it to try to investigate
this further or is the cost too high for strained open source maintainers?

We agree with the concerns held by Laube and Bohme with how this will
play out in the Internet of Things [19]. The example of the pacemaker bug
being witheld to invoke short-term stock market movement was not the end of
this story; this was later patched. The patch was rolled out cautiously due to
the implications of patching an implanted device and the 1% risk of the patch
bricking the device [28]. Particularly, elderly people with pacemakers were much
less likely to patch than others. If the bug was privately disclosed, it might
not have been patched due to its low impact - high cost nature. Instead, it
was weaponised and caused a large, perhaps unnecessary, strain on the medical
system.

While we consider tradeoffs informing defender behaviour, others have al-
ready considered why attackers could strategically not attack a system [12]. This
work shows that deterrence can work. We leave the task of weaving together this

4 https://www.schneier.com/essays/archives/2007/01/information_security_
1.html

5 For instance, open redirects are a common bug exploited by SEO spammers or cyber-
criminals cloaking phishing websites or counterfeit goods websites. Google explicitly
does not patch this despite awareness of the broader potential issues, explicitly out-
lining their tradeoffs in terms of other benefits [13]. Github’s git.io service allowed
these for awhile, but shut them down in 2022 due to the volume of abuse [11].



Strategically Holding Back Bugs and Patches 7

work with ours to future work. While attacker versus defender behaviour is of-
ten modelled as a cat and mouse game, considering alternate strategies could
improve our understanding of the world in real terms beyond academic approx-
imations.

Deployment of Patches. Much of the work considering tradeoffs in patching be-
haviour happens after the decision we consider does. That is, considering whether
end users patch or do not patch their systems after the patch is available [33,
34]. These mirror hardships when system administrators deploy patches to their
systems [14, 26]. In both cases, others find that patches are expensive to deploy,
either in time to research and test patches [14] or paying a person (internal or
external) to deploy patches to individual devices [16]. It is possible to write code
with an explicit expiration date to get around the predisposition to not deploy
patches — for example, the messaging app, Signal, forces the expiration of its
binaries 90 days after release [29]. We do not explicitly consider the deployment
of patches in our model. However, these decisions mirror the decisions captured
in our ontology on why companies might not patch vulnerabilities in the first
place — it is expensive, particularly if low or future impact.

5 Conclusion

Many strategies here are illegal. These are clearly bad and we strongly rec-
ommend against employing illegal strategies. Some surprisingly are legal — the
Muddy Waters example is a legitimate company operating within the rules of
the US. But, like we saw with jailbreaks, the rest are largely in a legal grey area.

Patching advice often feels like a rational astrology that happens to work [15].
We patch because of bureaucratic inertia, a term that Kelsey and Schneier coin
for security advice we follow because “it’s always been done this way”. Our work
attempts to break down when to ignore this belief system (or at least companies
or individual software developers do).

At any given time, there is a significant number of known vulnerabilities
that either have not been disclosed or have not been patched. Academics should
consider these behaviours in their models of incentivising patching. Similarly,
academics should consider engineering incentives to reduce these behaviours,
particularly those which are security sensitive.

References

1. Anderson, R.: Why information security is hard — an economic perspective. In: Sev-
enteenth Annual Computer Security Applications Conference. pp. 358-365. IEEE
(2001)

2. Ayala, J., Tung, Y.J., Garcia, J.: A mixed-methods study of open-source soft-
ware maintainers on vulnerability management and platform security features. In:
Usenix Security (2025)

3. BBC News: New iPhone worm can act like botnet say experts (2009), http://
news.bbc.co.uk/1/hi/technology/8373739.stm



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Marie Vasek and Ryan Castellucci

Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: A standardized back door.
In: LNCS Essays on The New Codebreakers, pp. 256-281. Springer (2016)
Bohme, R., Eckey, L., Moore, T., Narula, N., Ruffing, T., Zohar, A.: Responsible
vulnerability disclosure in cryptocurrencies. Communications of the ACM 63(10),
62-71 (2020)

Byfield, B.: Why I rarely file bug reports. Linux Magazine (2014), https://www.
linux-magazine.com/Online/Blogs/0ff-the-Beat-Bruce-Byfield-s-Blog/
Why-I-rarely-file-bug-reports

Castellucci, R.: Bitfi’s hardware wallet is terrible (2018), https://rya.nc/
bitfi-wallet.html

Caulfield, T., Ioannidis, C., Pym, D.: The US vulnerabilities equities process: An
economic perspective. In: Decision and Game Theory for Security. pp. 131-150.
Springer (2017)

Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,
Heninger, N., Weinmann, R.P., Rescorla, E., Shacham, H.: A systematic analy-
sis of the Juniper Dual EC incident. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 468-479 (2016)
Ghosh, R., De, S., Mondal, M.: “I wasn’t sure if this is indeed a security risk":
Data-driven understanding of security issue reporting in GitHub repositories of
open source npm packages. In: Usenix Security (2025)

Github: Git.io no longer accepts new urls (2022), https://github.blog/
changelog/2022-01-11-git-io-no-longer-accepts-new-urls/

Heitzenrater, C., Taylor, G., Simpson, A.: When the winning move is not to play:
Games of deterrence in cyber security. In: Decision and Game Theory for Security.
pp. 250-269. Springer (2015)

Hunters, G.B.: Google and alphabet vulnerability re-
ward program (vrp) rules, https://bughunters.google.
com/about/rules/google-friends/6625378258649088/
google-and-alphabet-vulnerability-reward-program-vrp-rules

Jenkins, A.D.G., Liu, L., Wolters, M.K., Vaniea, K.: Not as easy as just update:
Survey of system administrators and patching behaviours. In: Proceedings of the
2024 CHI Conference on Human Factors in Computing Systems. CHI ’24, Associ-
ation for Computing Machinery, New York, NY, USA (2024)

Kelsey, J., Schneier, B.: Rational astrologies and security. RossFest Festschrift
(2025)

Kustosch, L., Ganan, C., van Eeten, M., Parkin, S.: Patching up: Stakeholder
experiences of security updates for connected medical devices. In: Usenix Security
(2025)

Langley, A.: Apple’s SSL/TLS bug, https://www.imperialviolet.org/2014/02/
22/applebug.html

Laszka, A., Zhao, M., Malbari, A., Grossklags, J.: The rules of engagement for
bug bounty programs. In: Financial Cryptography and Data Security. pp. 138-159
(2018)

Laube, S., Bohme, R.: Strategic aspects of cyber risk information sharing. ACM
Computing Surveys 50(5), 1-36 (2017)

Leyden, J.: C’'mon, if you say your device is ‘unhackable’, you’re just asking for
it: Bitfi retracts edgy claim. The Register (2018), https://www.theregister.com/
2018/08/31/bitfi_reluctantly_drops_unhackable_claim/

Microsoft 365 Troubleshooting: Excel incorrectly assumes that the year 1900 is a
leap year (2024), https://learn.microsoft.com/en-us/office/troubleshoot/
excel/wrongly-assumes-1900-is-1leap-year



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

Strategically Holding Back Bugs and Patches 9

Moore, T., Friedman, A., Procaccia, A.D.: Would a ‘cyber warrior’ protect us:
exploring trade-offs between attack and defense of information systems. In: New
Security Paradigms Workshop (NSPW). pp. 85-94. ACM (2010)

Muddy Waters Capital LLC: MW is Short St. Jude Medical (STJ:US) (2016),
https://muddywatersresearch.com/research/stj/mw-is-short-stj/

Munroe, R.: xked: Workflow (2013), https://xkcd.com/1172/

ten Napel, G., van Eeten, M., Parkin, S.: Speedrunning the maze: Meeting regula-
tory patching deadlines in a large enterprise environment. In: 2025 IEEE Sympo-
sium on Security and Privacy (2025)

Nurse, J.: To patch or not to patch: Motivations, challenges, and implications for
cybersecurity. In: International Conference on Human-Computer Interaction. pp.
265-281. Springer (2025)

Ruth, K., Obu, R.B., Shode, I., Li, G., Gates, C., Ho, G., Durumeric, Z.: A first
look at governments’ enterprise security guidance. In: Usenix Security (2025)
Saxon, L.A., Varma, N., Epstein, L.M., Ganz, L.I., Epstein, A.E.: Factors influ-
encing the decision to proceed to firmware upgrades to implanted pacemakers for
cybersecurity risk mitigation. Circulation 138(12), 1274-1276 (2018)

Signal Support: Open signal on your phone to keep your ac-
count active, https://support.signal.org/hc/en-us/articles/
9021007554074~ 0pen-Signal-on-your-phone-to-keep-your-account-active
Syverson, P., Traudt, M.: HSTS supports targeted surveillance. In: 8th USENIX
Workshop on Free and Open Communications on the Internet (2018)

thejsa: Hacker news (2024), https://news.ycombinator.com/item?id=39983964
UK National Cyber Security Center: The problems with patching (2019), https:
//wuw.ncsc.gov.uk/blog-post/the-problems-with-patching

Vaniea, K., Rader, E., Wash, R.: Betrayed by updates: how negative experiences
affect future security. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. p. 2671-2674. CHI ’14, Association for Computing
Machinery, New York, NY, USA (2014)

Vaniea, K., Rashidi, Y.: Tales of software updates: The process of updating soft-
ware. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems. p. 3215-3226. CHI 16, Association for Computing Machinery, New York,
NY, USA (2016)

Wyden, R., Lee, M.S., Booker, C.A., Nadler, J., Thompson, B.G., Lieu, T.W.,
Lofgren, Z., Payapal, P., Malinowski, T., Eshoo, A.G., Foster, B., Khanna, R.,
DelBene, S.K.: Letter to Rami Rahim (2020), https://www.wyden.senate.gov/
imo/media/doc/061020%20Wyden’,20Led%20Bicameral’,20Juniper,20Letter . pdf



